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A refinement is given of the classical Kelvin equation in pores, which takes into ac- 

count the influence of adsorption forces on the shape of the liquid-vapor meuiscus. It 
is shown that the curvature of the meniscus is dependent on the distance to the walls of 

the pores and that taking into account this dependence leads to a different shape of the 
meniscus from the hemispherical shape generally assumed for cylindrical pores. The 

influence of adsorption forces on the liquid-vapor equilibrium is shown to result in a 

stabilizing of the capillary-condensed liquid in the pore, as well as in a mechanism for 
the evaporation process which is different from that which is based on the application of 

the classical Kelvin equation in cylindrical pores. 

1. INTRODUCTION 

In the preceding three articles of this 
series (1, 2, S) it was shown that the adsorp- 
tion branch of a nitrogen sorption isotherm 
may be used for the calculation of pore 
distributions in the case of A-type and 
E-type hysteresis loops, provided the nec- 
essary corrections are applied to Kelvin’s 
equation in order to take into account the 
influence of adsorption on the stability of 
the liquid-gas interface* present during 
adsorption in a cylindrical or spherical 
cavity. These corrections may be calculated 
according t#o the method given in Part IX 
of this series (1). 

The discussion of the process of capillary 
condensation given in Part IX led to the 
conclusion that it is not justified to apply 
the uncorrected Kelvin equation to the 
analysis of capillary condensation during 
adsorpGon and, moreover, that similar 

* The rondensed phase may be a supercrit,ical 
t,wo-dimensional NZ layer, or perhaps an already 
three-dimensional NZ layer formed by capillary 
condensat,ion: this question will be treated in one 

of the following articles of t.his series. 

corrections have to be applied to the Kelvin 
equation when it is used for the analysis 
of the desorption branch of an isotherm 
measured at a porous adsorbent;at least 
in the case of cylindrical pores. 

The last-mentioned necessity, viz., a cor- 
rection of the Kelvin equation used for 
the desorption branch, in order to take 
into account the influence of adsorption 
on the equilibrium between the capillary- 
condensed phase and the gas phase, was 
already pointed out several years ago by 
B. V. Derjaguin (4), who gave a complete 
and consistent treatment of the desorption 
from slit-shaped pores filled with capillary- 
condensed liquid (5). 

To our knowledge, the formula of Der- 
jaguin has not yet been systematically 
applied to the analysis of the desorption 
branch of sorption isotherms, although we 
will show in Part XIV of this series that such 
may be done quite easily with the aid of the 
concept of the common t curve of muIti-- 

molecular adsorption. In the present paper 
we discuss in some detail the shape of the 
meniscus, which is consistent with the in- 
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fluence of the adsorption forces emanating 
from the walls of the pore in the case of 
cylindrical pores. We show that the same 
criterion for desorption given in Part IX of 
this series may be obtained along a different 
line of reasoning, viz., by modifying the 
classical geometrical picture, commonly con- 
nected with Keivin’s equation (6, 7), by 
taking into account the influence of the 
adsorption forces. 

2. GEXEHALIZATION OF 
KELVIS'S EQUATION 

In Part IX of this series it was shown that 
the essential assumptions underlying the 
classical application of Kelvin’s equation 
to the condensation in and evaporation 
from pores-namely, the constancy of the 
thermodynamic potential of the phase 
condensed in the pores, taken as being 
equal to that of the bulk liquid at the same 
temperature and thus taken to be inde- 
pendent of the distance to the pore walls- 
led to some inconsistencies, which could 
only be discarded by taking into account 
explicitly the dependence of the thermo- 
dynamic potential of the liquid condensed 
in the pores upon t,he distance to the pore 
walls. 

The same refinement may be incorporated 
in the usual derivation of Kelvin’s equation, 
where on geometrical grounds a connection 
is made between the curvature of the 
meniscus of the liquid and its vapor pressure. 
Although in principle it is not strictly nec- 
essary to assume the density of the capillary- 
condensed liquid to be constant and inde- 
pendent of the distance to the pore wall, 
nor is it necessary to take the surface tension 
of the liquid-vapor interface as a constant 
and independent of the curvature of the 
interface, in general the density of the 
adsorbed and capillary-condensed phase is 
supposed to be equal to that of the bulk 
liquid at the same temperature, whereas 
t’here are arguments t,o suppose that the 
curvature of an interface has only a very 
small influence on the magnitude of the 
surface tension (8, 9). In the present dis- 
cussion we will assume both parameters to 
be constant and equal to those of the bulk 
liquid. 
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FIG. 1. (a) The shape of the meniscus present 

during desorption from a cylindrical pore. (b) Axial 
section through the pore of Fig. la. 

Consider a meniscus present in a cylin- 
drical pore of radius T at a certain relative 
pressure p/p, (see Fig. la). Edge effects 
will be neglected. A plane section through 
the axis of the cylindrical pore of Fig. la is 
shown in Fig. lb. A reference coordinate 
framework is shown in the same figure, 
the y axis being parallel to the pore walls 
and the x axis being perpendicular to it. 
For the meniscus to be in equilibrium with 
the vapor phase, it is necessary that each 
particular point of the meniscus independ- 
ently is in equilibrium with the vapor phase. 
For a transfer of dN moles of vapor to a 
point of the meniscus, the change in free 
enthalpy is given by 

~G,,T = (pt - pg) dN + 7dA (1) 
where the thermodynamic potential of the 
vapor is denoted by pg, that of the capillary 
condensed phase at a distance t of the pore 
wall by pt and the surface tension of the 
liquid-vapor interface by y; dA represents 
the change in free interface area upon trans- 
ferring these dN moles to that part of the 
meniscus situated at a distance t from the 
wall. It will be clear that dA is related to 
dN through the curvature of the meniscus 
at a distance t from the pore wall by (10) 

!g= -q&+;) (2) 
where RI and Rz are the main radii of 
curvature of the meniscus at a distance 
t from the wall, or, according to Euler’s 
theorem, any two radii of curvature normal 
to each other. Accordingly, (1) may be 
written as 
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dG 
- 
dN*,T 

= /Jt - PLy - rJ’m (&+&) (3) 

In equilibrium for every part of t’he me- 
niscus the relation 

dG/dN,.T = 0 (4) 

must hold and, consequently, for the case 
of equilibrium Eq. (3) may be writt,en as 

&+&= & (Nt - PA (5) 

As ~1~ is a function of the distance from the 
pore wall, the radius of curvature of the 
meniscus is seen to be dependent on that 
same distance. Relation (5) thus is a sort of 
generalization of Kelvin’s equation, relating 
the curvature of the meniscus to the thermo- 
dynamic potential in the case that this 
thermodynamic potential depends on the 
coordinates of the system. In order to derive 
from (5) the shape of the meniscus in a par- 
ticular case, it is necessary to connect the 
radii of curvature to the equation describing 
the meniscus analytically with respect to the 
reference frame. 

In Fig. lb the meniscus is considered to 
be convex, so RI and Rz are both positive. 
Let us denote the radius of curvature of 
the section through the meniscus shown 
in Fig. la by RI. The other radius of curva- 
ture, Rz, is perpendicular to RI, and is 
situated in a plane perpendicular to the 
CC-~ plane of Fig. lb. 

In a certain point P of the section through 
the meniscus shown in Fig. lb a tangent is 
drawn to the meniscus and the angle be- 
tween this tangent and the x axis is denoted 
by (a). For the meniscus, y’ = tan (a), 
whereas y” = l/cosz(a) X d(a)/d(x). Ac- 
cording to elementary geometries, RI may 
be related to the coordinates x and y of the 
meniscus by (11) 

RI = (1 + y’2)3’2/y” (6) 

whereas, as a consequence of the symmetry 
of the meniscus around the cylinder axis, 
Rz is related to RI by (12) 

Rz = r/sin(a) (7) 

By substituting tan(u) for y’, (6) may be 
written as 

RI = [~/cos(a)lld/(x)/d(a)l (8) 

and by substituting (7) and (8) into (5), we 
obtain 

cos(u) d(u) sin(u) 
d(x) + x 
d sin(u) + sin(a) = =- 

4x1 5 &) (Pt - PLg) (9) 

If pt is expressed as a function of 2, the 
distance from the axis of the pore, then 
(9) is a simple first order linear differential 
equation in sin(a) and IC. The general solution 
of this equation is (13) 

sin(a)z = l,/(yV,) / x(pt - pg) dx 

+ integration constant (10) 

According to Fig. lb, z is related to r, the 
pore radius, and t, the distance to the pore 
wall, by 

.c = -(r - t) (11) 

Integration of (10) between the bound- 
aries 0 and -(r - t), i.e., from the center of 
the pore to a distance t from the pore wall, 
result,s in the following expression for the 
slope of the meniscus at a distance t from 
t,he pore wall 

- sin(u)(r - t) -(r-l) 

the integration constant of (10) vanishing 
on account of the obvious boundary con- 
dition 

sin(u) = 0, for t = r (13) 

With the aid of Eq. (12) the shape of the 
meniscus may be determined as a function 
of 1, the distance from the pore wall, pro- 
vided Pt is known in dependence of t. In 
Part IX of this series, it was proposed to 
express pClt formally as 

Clt = E1L - F(t) 
and it was shown that F(t) may, in principle, 
be obtained from the universal t curve of 
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multimolecular adsorption, on the assump- 
tion that the influence of the wall curvature 
of the solid material constituting the pores, 
on c(~, may be neglected. Consequently, 
(12) may formally be written as 

- sin(a)(r - t) = 
A JI’ [49 

1 

- F(t) (r - t> dt (14) 
1 

3. ANALYSIS OF THE SHAPE 
OFTHEMENISCUS 

From (14), for a certain value of r and 
p/pO, sin(u) may be calculated as a function 
of t, the distance to the pore wall. Of 
course, sin(u) is related to y’ by 

y’ = sin(a)/[l - sinz(u)]‘/” 

Thus, the whole shape of the meniscus 
shown in Fig lb is determined by the equa- 
tion 

1J= 
i tr,l - 

sin(a) dt 
sin2(u)]1’2 (15) 

which may be integrated upon substitution 
of (14) for sin (a). 

Actually, an analytical solution of (15) 
may only be found in very simple cases. 

(A) In the classical theory of capillary 
evaporation, where the state of the con- 
densed phase is considered to be equal to 
that of the bulk liquid, F(t) equals zero 
for every value of t, and (12) reduces to 

- sin(u)(r - t) 

viz. 

sin(a) = - R;:f!p”‘p) (r - t) (16) 
7n 

If we denote ByV,/[RT ln(po/p)] by Rk, 
then in the classical case (15) reduces to 

Y=- 
/ tr {l ‘;(;!!ltfl;R,]2,1,2 dt 

This is the equation of a circle with radius 
Rk. The radius of the circular meniscus 
(which is the section of the meniscus by 
the z-y plane of Fig. lb, if, as is assumed in 
the application of the Kelvin equation, 
this meniscus is hemispherical and not 
conical as already shown in the figure) 
decreases with decreasing p/pa. In order 
that the meniscus covers the whole diameter 
of the pore, it is evidently necessary that 

Rk 2 (r - ta) 

where t, is the thickness of the adsorbed 
layer belonging to the relative pressure 
p/pa. This immediately leads to the well- 
known Kelvin equation for desorption 
from cylindrical pores 

2rVnI 
(18) 

The shape of the meniscus according to 
the classical picture is sketched in Fig. 2a 
for different relative pressures. The desorp- 
tion condition eq. (18) is equivalent to the 
requirement that the hemispherical meniscus 
in the pore just touches the adsorbed layer 
at the walls of the pore for p = pD, viz., 

sin(u) = - 1 for t = t, and p = pD (19) 

(B) For the adsorption of nitrogen in 
not too narrow pores present in inorganic 
oxides and related substances, it was shown 
in Part X that F(2) is not negligible, but 
may be expressed as a mathematical function 
of t. Integration of (15) then is not simple 
and in general is not analytically possible, 
although a numerical solution of (15) may 
always be obtained for stable meniscii. 
Information about the shape of the meniscus 
in this last case may be obtained by in- 
vestigating the behavior of the radii of 
curvature of the meniscus as a function 
of the distance from the pore walls. Ac- 
cording to (8), the first principal curvature 
may be denoted by d sin(u) / dt, so from 
(14) the first principal curvature may be 
calculated to be equal to 

1 
l& = 

RT Wolp) F(t) -- 
2yV, TVT?i 

which is equal to 

y = Rk - [Rk2 - (r - t)2]1’2 (17) 
(20) 
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FIG. 2. (a) The shape of the meniscus in a cylindrical pore according to the classical picture for different 

relative pressures. For the sake of clarity, the change in thickness of the adsorbed layer as a function of 
pressure is not shown. (b) The shape of the meniscus in a cylindrical pore according to the present treatment 

for different pressures. For the sake of clarity the variation of the thickness of the adsorbed layer with pres- 

sure is not shown. 

It is seen that the effect of F(t) is to reduce the meniscus just touches the adsorbed 
the curvature of the meniscus, although layer of thickness t,, corresponding to 
this effect is counteracted by the integral sin(u) = - 1 for t = t,, which is equivalent 
term at the right-hand side of (20), and to condition (19) for desorption. Upon a 
that the curvature is nowhere a constant further decrease in relative pressure the 
but diminishes towards the walls of the meniscus detaches itself from the adsorbed 
pore, where F(t) increases. Even in the layer at the walls of the pore and emptying 
center of the pore the curvature is smaller of the pore, except for the equilibrium ad- 
that the curvature corresponding to the sorbed layer at the walls of the pore, occurs. 
application of the classical Kelvin equation, Integrating (14) from t, to r and putting 
by an amount F(t)/(-yV,). sin(a) equal to - 1, yields the desorption 

The second principal curvature l/Rz, condition 
which is given by (7)) may be calculated to 
be equal to 

-1 = 
- Ldr (T - t)W ln(pdpD) - F(t)1 dt / 

rvm (r - te) 
1 I t r (r - t)F(t) dt 

-= RT Wolp) _ 
R2 2rVm (r - t)2rv7n 

(21) viz. 

In the center of the pore this second curva- 
ture equals that of the meniscus correspond- 
ing to the classical Kelvin equation, but 
again the curvature is not constant but 
decreases towards the walls of the pore. 
Thus, in not very wide pores, the meniscus 
is not hemispherical but. rather more conical 
in character, resembling the shape repre- 
sented in Fig la. Upon decreasing relative 
pressure the curvature at each point of 
the meniscus increases and qualitatively 
the shape of the meniscus as a function of 
relative pressure may be represented by 
the lines of Fig. 2b. When the vapor pressure 
in the system is decreased to a value pD, 

2rV?n 
r - te = RT ln(po/pD) 

/ 
’ 2(r - t)F(c) dt 

’ (T “f t,)RT ln(po/pD) (“) 

Relation (22) has already been derived in 
Part IX of this series along a different 
line of reasoning. Just as was pointed out 
there it is to be realized that according to 
the present treatment t, is no longer only 
dependent on the relative vapor pressure 
in the system, but also on the pore radius. 
In Part IX of this series it was shown that 
for t, to be an equilibrium the thickness 
corresponding to a minimum in the free 
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enthalpy of the system the following relation 
must hold 

RT ln(pdpD) - F(tJ = -tJ’,,J(r - te> (23) 

This equation is consistent with the present 
treatment, as may be seen from the re- 
alization that for the adsorbed layer, which 
essentially is a cylindrical meniscus, RI 
must be zero and Rz is equal to (T - tJ. By 
adding the relations (20) and (21), for the 
pressure pD, (23) is readily obtained. 

If F(t) is known as a function of t, the 
desorption pressure pD corresponding to 
a certain pore radius r, may be found by 
eliminating t, from (24) and (25) and solving 
for PD. 

The present discussion confirms, on a 
geometrical basis, the views forwarded by 
Derjaguin in 1940 (S), on capillary evap- 
oration from nearly cylindrical pores. Along 
a different line of reasoning, by making 
use of the concept of disjoining pressure, 
this author arrived at an equation essentially 
equivalent to relation (22), though the 
correction (23) to the thickness of the 
adsorbed layer was not taken into account 
before. As was shown in Part IX of this 
series, it is exactly this equation that leads 
to the concept of capillary condensation in 
open cylinders and to the concept of sorption 
hysteresis connected with the just mentioned 
model. Nevertheless, it is somewhat sur- 
prising that the ideas of Derjaguin have up 
till now found no practical application in 
the calculation of pore distributions from 
sorption isotherms. 

4. MECHANISM OF CAPILLARY 
EVAPOIZATION 

Consider again Fig. 2b. It is seen that 
the meniscus shown in that figure gradually 
deepens upon decreasing the relative pres- 
sure, until below the pressure pD, corre- 
sponding to (22) and (23), the meniscus 
ceases to exist. It is important to investigate 
whether, for the pressure pD, the distance 
between the minimum of the meniscus, 
m, situated at the center of the pore with 
coordinates z = 0 and y = 0 (see Fig. lb) 
and the point of contact, c, between the 
meniscus and the adsorbed layer, situated 
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fined value. Because of the mathematical 
difficulty in integration of (15) analytically 
in the case of nonzero F(t), the problem 
has to be solved in an indirect way. From 
(14) it is evident that for p = pD the tangent 
to the meniscus is infinite at the point c, 
where t = t,. From (20), (22), and (23) it 
may be easily verified that at this pressure 
the curvature of the section of the meniscus 
with the 2-y plane is exactly equal to zero 
in the point t = t,. 

Now it is a general feature of lines ex- 
hibiting at a certain point a vertical slope, 
combined with zero curvature, that the 
y coordinate of such a point is situated 
at an infinite distance from any other y 
coordinate of any other point of such a line. 
In fact this property of the lines of the class 
just discussed may be proved strictly 
whenever it is possible to express the tan- 
gent to the lines as a polynomial in t or 
a fraction of polynomials in t. 14s the em- 
pirical representations for F(t), discussed 
in Part X of this series, may be shown to 
possess these properties, it is to be expected 
that the y coordinate of the meniscus in 
the point t = t, is situated at an infinit#e 
distance from the minimum of the meniscus, 
in the center of t,he pore whenever p has 
just reached the critical pressure pD of 
(22) and (23). This property of the model of 
the meniscus presented here was confirmed 
by numerical integration of (15) for the 
functions F(t) representing the adsorption 
of nitrogen at its normal boiling point. 

This leads us to an interesting conclusion 
concerning the emptying of pores filled with 
capillary condensate. In the classical pic- 
ture, the meniscus always is hemispherical, 
its radius of curvature never being infinite. 
Consequently, the depth of the meniscus 
is restricted, attaining its maximum value 
at p = PD. In accordance with Fig. 2a the 
depth of the meniscus below the mouth of 
the pore reaches a Value of (r - ta) for p = pD. 
On lowering the relative pressure below 
pD/pO, the meniscus vanishes and capillary 
desorption takes place as a discontinuous 
process, resulting a sudden release of cap- 
illary condensate. 

When, however, the influence of the wall 
at x = -(T - tJ, has a discrete, well-de- on t#he stat’e of the capillary-condensed 
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- VP0 - PIP0 

FIG. 3. (a) Volume of capillary condensate, V,, as a function of pressure, in a cylindrical pore according 
to the classical picture. Sudden evaporation, except for tha adsorbed layer, takes place at the pressure PD. 
(b) Volume of capillary condensate, V,, as a function of pressure, in a cylindrical pore according to the 
present treatment. At the pressure PO, the pore is just empty except for the adsorbed layer of thickness t.. 

liquid in the pore is taken into account, by 
means of F(t), the picture is completely 
changed. On lowering the relative pressure 
from saturation downwards the meniscus 
gradually deepens, until at the pressure 
pD, the depth of the meniscus has become 
infinite. In other words, at the pressure 
p = pD every pore of radius r and of finite 
length is completely empty, except for an 
adsorbed layer of thickness t,. The emptying 
of pores is seen to be a continuous process 
and the pressure pD is seen to be a limiting 
value for the presence of capillary con- 
densate, the capillary-condensed phase being 
gradually released from the pore. In Fig. 
3a and 3b both mechanisms of desorption 
from cylindrical pores-the discontinuous 
process that would follow from the ap- 
plication of Kelvin’s equation, and the 
continuous process that follows from the 
treatment leading to the corrected Kelvin 
equation (22)-are represented schemati- 
cally. 

Whereas the preceding discussion may 
be of theoretical interest, its practical 
consequences are limited. Only in the neigh- 
borhood of pD is the extension of the me- 
niscus of quantitative significance for the 
function F(t), discussed in Part X of this 
series, so for practical purposes the con- 
tinuous desorption process connected with 
the discussion of the present model of capil- 
lary evaporation may be replaced by a 
practically discontinuous emptying at the 
pressure p = pi corresponding to (22) and 

(23). It is to be stressed, however, that the 
desorption process from cylindrical pores 
is seen to differ basically from the adsorp- 
tion process in open cylindrical pores. Bs 
was shown in Part IX of this series, capil- 
lary condensation during adsorption in 
open cylinders is a discontinuous process, 
resulting from the transition of a metastable 
adsorbed layer at the walls of the pores 
to an unstable adsorbed layer. This is in 
accordance with the essential metastable 
character of the adsorption branch in 
open cylinders, as compared to the com- 
pletely stable character of the desorption 
branch of cylindrical pores. 

In the case of ideal cylinders closed at 
one end, the adsorption branch and the 
desorption branch will coincide because, 
as soon as pD is reached during adsorption, 
a meniscus will be formed at the bottom 
of the cylinder (this meniscus essentially 
is already present in the form of an adsorbed 
layer at the bottom of the pore), and in- 
creasing the pressure above the value pD 
will result in a complete filling of the pore, 
exactly in the reverse direction from the 
desorption process in the neighborhood of 
PD. Thus, adsorption and desorption are 
essentially reversible processes, neither of 
them being stepwise in character, and corn- 

plete equilibrium exists over the whole 
isotherm. 

In the case of Type II ink bottles (S) 
a narrow neck at the open side of the pore 
prevents equilibrium evaporation during 
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desorption as long as the neck of t,he pore is 
completely filled with capillary condensate. 
In this case the adsorption branch is the 
st,able branch, at least with regard to the 
wide cylindrical part of the ink bottle, 
whereas the desorption branch is only 
&able with respect to the narrow necks of 
the pores. Very short necks may behave 
tlifferent,ly. According to the present dis- 
cussion t,he exact pressure at which a cy- 
lindrical pore empties, t’o some extent. is 
dependent on the length of the pore, the 
pore being empty the moment the depth 
of the meniscus exceeds the length of the 
pore. For not very short pores this effect 
may be neglected and the pressure of com- 
p1et.e emptying essentially coincides with 
PO, but with very short necks this effect 
might result in a more narrow hysteresis 
loop t’han would actually be expected from 
t’he radius of the ink-bottle necks, making 
t,he analysis of the desorption branch in 
the case of ink-bottle-type pores even more 
complicated. 

5. CoscLusIoix-s 

In t,he preceding sections of this paper 
we have given independent arguments for 
t.he viewpoint developed several years 
ago by Derjaguin that the curvature of 
a liquid-gas meniscus present in a narrow 
pore must be dependent not only on the 
relative vapor pressure (as it would be 
according to Kelvin’s equation), but also 
on t’he magnitude of the interaction be- 
tween the solid pore walls and t,he capillary- 
condensed liquid. By giving a refined der- 
ivation of Kelvin’s equation, while taking 
into account the dependence of the thermo- 
dynamic potential of the capillary-con- 
densecl phase on the distance to the pore 
walls, we were able to establish the con- 
nection between curvature of the meniscus 
and t,he interaction between the capillary- 
condensed phase and the solid walls. As 
a result of this analysis it has been shown 
that, when the influence of the wall inter- 
action is taken into account, the two main 
curvatures of the meniscus no longer are 
constant and equal in magnit,ude. Con- 
sequently, in an actual pore the shape of 

the meniscus may not be expected to be 
hemispherical any more. Moreover, if the 
dependence of the curvature of the meniscus 
on relative pressure and distance to the 
pore walls is regarded in more det,ail, it 
has to be concluded t’hat the actual mecha- 
nism of capillary evaporation is somewhat 
different from that consistent with the 
classical views on capillary evaporation 
resulting from the application of Kelvin’s 
equation in its uncorrected form. In the 
present point of view capillary evaporation 
no longer consists of tu-o equilibrium stages, 
viz., the pore completSely filled with capil- 
lary condensate on the one hand and the 
pore only carrying an adsorbed layer on 
the ot’her hand, interconnected through 
a series of nonequilibrium stages corre- 
sponding to the sudden emptying of the 
pore, but the actual process of capillary 
evaporation is pictured as a series of equilib- 
rium stages of emptying, connected with 
a progressively increasing overall currat,ure 
of the meniscus, reaching a critical value 
at the pressure pD, just, correl;ponding to 
an empty pore except, for t.hc prc~;cncac of 
an adsorbed layer. 

In the next article in this series (following 
in t’his issue) we will show how, with the aid 
of the common t curve of multimolecular 
adsorption for oxidic subst8ances, the pres- 
sure at which desorption occurs from a pore 
of certain radius, may be calculated. It must 
be realized, however, that the present dis- 
cussion is still essentially a nonmolecular 
one, and that the validity of the present 
method for pores with radii of only a few 
molecules diameters, viz., for submicropores, 
cert.ainly is questionable. 
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